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Abstract

Recurrent neural networks (RNNs) have seen
widespread use across a variety of generative tasks
requiring temporality [6] [18]. In this paper we explore
the effectiveness of deep recurrent networks in the task of
understanding motion. In particular, we propose a modular
architecture for inferring realistic motion from still ‘seed
images’, based on the recent success of generative adver-
sarial networks. We evaluate this architecture on a variety
of synthetic datasets and show that our network is able to
successfully learn motion and generate new videos from
still images.

1. Introduction
How do objects move? Humans are adept at intuiting the

the rules of motion from imperfect visual information; rules
that determine how objects can move, and how they should
move, with varying degrees of certainty. From a young age
we understand, for instance, that an object in motion should
remain in motion, and should continue to move in the same
direction unless acted upon by an external force; similarly,
we understand that when two objects moving towards one
another on the same plane collide, they should reverse their
directions and move apart. Crucially, we form these un-
derstandings long before we form understandings about the
physical mechanisms by which they are underpinned. We
understand that balls bounce before we understand grav-
ity, or the equations that govern elastic collisions. Unfor-
tunately, as is frequently the case in computer vision, what
comes naturally to a human presents a sophisticated learn-
ing task for a computer.

Understanding these ‘rules of motion’, while not criti-
cal for understanding existing videos, is central to the task
of generating realistic sequences of images over time. Each
frame must plausibly follow from the frame that precedes it,
and objects depicted should move, deform, and interact in
ways consistent with the physical rules that govern objects
in motion. Structuring the video generation task to account
for the importance of consistency with regards to the rules

of motion is a challenging task. Situations wherein an al-
gorithm capable of synthesizing convincing natural motion
are easily imagined. Consider, for instance, the production
of animated films, which at present is a prescriptive task re-
quiring high degrees of human intervention. The implicit
learning of physical laws from visual information, further,
is a task with implications that are interesting even when
divorced from a practical application.

In this paper, we apply deep learning to the problem of
producing realistic sequences of images from an initial seed
image. Specifically, we present a recurrent adversarial ar-
chitecture for frame generation, trained on two datasets to
produce natural (if highly simplified) motion. We use a
modified variational autoencoder (VAE) to produce smooth
latent encodings of video frames, which are used as inputs
to a Long Short-Term Memory (LSTM) network that pre-
dicts the next frame in the current sequence. The outputs of
this combined network is enhanced by an adversarial dis-
criminator, which is trained alongside the frame generation
network.

In Section 2, we discuss previous approaches to the prob-
lem, as well as solutions to other similar tasks that influ-
enced our work. In Section 3, we outline the datasets and
preprocessing techniques we used in arriving at our results.
In Section 4 we describe our architecture and training pro-
cedure in greater detail. In Section 5, we summarize the re-
sults we obtained. Finally, in Section 6, we suggest a wide
range of future directions for continuing work in this vein.

2. Related work

The task of video generation seems to naturally decom-
pose into two problems: first, finding an effective feature
encoding of video frames that can easily and effective re-
produce the original frames, and second, generating future
frames from the feature encoding of the current frame. We
explore the literature surrounding both these problems indi-
vidually, and then look at work that synthesises both for the
specific purpose of video prediction.
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2.1. Image generation

Recent literature has seen an explosion of work related to
image generation. Architectures like PixelCNN [19], varia-
tional autoencoders (VAE) [10], and generative adversarial
networks (GANs) [5] have proven to be effective in learning
a latent distribution from which new images can be sam-
pled.

VAEs have been applied to a variety of image generation
tasks but on their own have several limitations. In particu-
lar, experiments have shown that reconstruction from VAEs
using pixel-wise difference loss generally results in blurry
outputs [17]. In this regard, generative adversarial networks
(GANs) have drastically outperformed other alternatives in
producing sharp images. GANs work by having the gener-
ative model compete with a binary classifier known as the
discriminator; the former tries to fool the latter in thinking
its outputs are real. We use this idea in our architecture to
produce clearer outputs by having a discriminator network
on top of our generative model.

2.2. Future Prediction

A large subset of recent research has explored tasks in-
volving some kind of sequence prediction. In particular, re-
current neural networks (RNNs) have been used in widely
ranging tasks such as highway trajectory prediction, precip-
itation forecasting, human trajectory estimation, and video
game sequence predictions [1][2][14][16]. In our model, we
use a recurrent network to generate future frames from the
current frame. Following the convention in literature, we
use a Long Short-Term Memory (LSTM) recurrent network
[7] due to its training stability and superior results.

2.3. Future Video Prediction

There has been some prior work on learning video rep-
resentations that capture motion of objects, although this
work has been restricted to relatively simple datasets due to
the complexity of the task.

One of the earlier forays into this problem was led by Sri-
vastava et. al [17]. Their architecture uses an encoder and
decoder LSTM to learn representations of video sequences
which they use to predict future frames. Although their re-
sults exhibit clear motion, the outputs are fairly blurry and
seem to lose the form of the numbers.

Other notable work related to this problem has been done
by Zhou and Berg [20] in generating timelapse videos and
cinemagraphs from still images. Their model uses an idea
similar to ours—a combination of a convolutional autoen-
coder and LSTM—but only uses the encoding of the initial
frame to generate all future frames. Our architecture on the
other hand uses the previous generated frame as input to the
next timestep and uses a variational encoder to encourage a
smoother latent space. Moreover, we train on unsupervised
data, hoping to learn motion just from frames.

3. Data
3.1. Datasets

We use two datasets for our experiments. First, we use
the Bouncing Balls dataset [12], which consists of anima-
tions of 2 balls bouncing around a square box. Collisions
between the two balls are simulated fairly consistently, and
momentum is conserved realistically during collisions both
between balls and between balls and the bounding box of
the frame.

Second, we use the synthetic Moving MNIST dataset
[17]. This dataset consists of animations of two randomly
chosen MNIST digits moving within and bouncing against
the edges of the frame. Moving digits do not collide, pass-
ing through each other instead, and movement is generally
less realistic than in the Bouncing Balls dataset. The lim-
ited number of classes allows the nation to focus on motion,
while the possibility for variation within classes highlights
the importance of an effective encoding mechanism.

Each dataset had a training set of size 80,000 and vali-
dation and test sets of size 10,000 each. Both datasets were
generated using adaptations of open source scripts [3] [11].

3.2. Preprocessing

To preprocess and standardize our data, we downsam-
pled all our gifs to be of size 64 x 64 and 20 frames long.

4. Methods
To successfully generate motion from still frames, we

had to capture both spatial and temporal motion. Convolu-
tional neural networks have proven extremely effective in
capturing important spatial information in pictures whereas
recurrent models such as LSTMs have been shown to be
successful in effectively dealing with sequential tasks. Our
architecture attempts to coalesce these two ideas. All our
models was implemented with the PyTorch framework [15]
and were trained on NVIDIA K80, P100 or V100 GPUs.

4.1. Architecture

Our model consists of four distinctive modules: an en-
coder network, a decoder network, an LSTM, and a discrim-
inator (Figure 1). At a high level, our architecture encodes
the seed frame into a latent vector representation which the
LSTM takes as input. At each time step t, the LSTM takes
the encoded representation of the last generated frame as
well as the previous hidden/cell state and attempts to gen-
erate the latent representation of the next frame in the se-
quence. The decoder network then converts this latent rep-
resentation back into an image.

The discriminator network is employed in two sepa-
rate GAN architectures. Firstly, the discriminator and en-
coder/decoder network are pitted against each other in or-
der to improve the output of the autoencoder. Secondly, the
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Figure 1. The generative architecture consists of a convolutional encoder network that outputs a latent vector. The LSTM operates on the
latent representation and then uses the decoder network to reconstruct the image. A discriminator network tries to distinguish real and
generated images.

discriminator is also fed the output at each timestep of the
LSTM in order to coax the LSTM to produce output that
more closely resembles the initial data.

4.1.1 Encoder/Decoder network

The encoder network takes inputs of size 64x64 with 1 or
3 channels (depending on the dataset) and applies four con-
volution layers of the form:

1. 32 filters of size 4× 4 with stride 2 and padding 1.
2. 64 filters of size 4× 4 with stride 2 and padding 1.
3. 128 filters of size 4× 4 with stride 2 and padding 1.
4. 256 filters of size 4× 4 with stride 2 and padding 1.

Each of the layers is followed by batch normalisation [9]
and a leaky ReLU activation function [13]. The output of
the convolutions is flattened and connected via two fully
connected layers that each output a vector in R95 of means
µ and log variances Σ, respectively, to sample the latent
vector z from. The z is sampled normally with mean and
standard deviation given by the output of the encoder i.e.

z ∼ N (µ,Σ).

The decoder network’s architecture is the inverse of the
encoder, with nearest neighbour upsampling followed by
convolution, batch normalisation, and leaky ReLU. The fi-
nal output is followed by a tanh nonlinearity.

4.1.2 LSTM

For our RNN, we use a single-layer LSTM with a hidden
and cell state size of 200. It takes an input of size 95 (the
same as the output of the encoder) and its output (of size

200) is passed through a fully connected layer to produce a
new encoding of size 95 which is passed into the decoding
network to produce the next frame of the animation.

4.1.3 Discriminator

The discriminator network, for the most part, has the same
architecture as the encoder discussed in 4.1.1. However, the
flattened output of this architecture is passed into a fully
connected layer that outputs a vector of size 95, which then
undergoes Batch Normalization and a leaky ReLU activa-
tion function. Following this, the vector is passed into an-
other fully connected layer that outputs a scalar logit. In 4.2,
we discuss how this discriminator is trained but in summary,
we use Binary-Cross Entropy loss on this logit.

4.2. Objective

To evaluate the progress of our network, we used a com-
bination of different loss functions to backpropagate into
the network.

The first portion of our loss is the reconstruction loss,
measured by mean squared error (MSE) between the gen-
erated frames and the ground truth frames of the sequence
(G(x) refers to the output of the network):

Lrec = |G(x)− x|2

It is a clear sentiment in the literature that using purely a
pixel-wise reconstruction loss results in blurry output [17],
so we took inspiration from the recent success of generative
adversarial networks in producing better quality images. In
this respect, the output of the generator network is evaluated
by a discriminator D that is trained to distinguish between
real and generated frames. We use binary cross entropy loss
to train the discriminator.

Lgan = log(D(G(x)))− log(1−D(G(x))
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In addition to this, we also penalised the encoder portion
of the network from straying too far from a standard distri-
bution when encoding images in the latent space. This re-
quirement was imposed to encourage a smooth transforma-
tion of generated outputs as the latent variable is smoothly
varied. The loss term was computed using the KL diver-
gence between the encoder’s outputs and N (0, 1):

LKL = DKL(qθ(z|x)||N (0, 1)).

Together, these three terms, weighted by some constants
λgan and λKL, gave the overall loss

L = Lrec + λgan · Lgan + λKL · LKL.

For our model, we used λgan = 1e−4 and λKL = 1e−8,

5. Experiments
In this section we outline the experiments we performed

on our two datasets. Visualisations of gifs, frame by frame
are provided in the paper but the medium of a pdf document
does not lend itself to displaying animated figures. Ani-
mated gifs can be found on this page

5.1. Bouncing Balls

We chose to begin our experimentation on the Bounc-
ing Balls dataset. This dataset is a good starting point as
the Bouncing Ball GIFS are relatively simple, since they
have only one colour channel and the balls are clearly de-
fined and therefore easy for a network to recognise. Thus,
the dataset better facilitates the network learning rules of
motion and collision, without the additional burden of re-
producing more complex shapes and colors.

While training, we used the Adam update with a learning
rate of 1e− 3 for the VAE-LSTM as well as the discrimina-
tor and a batch size of 32.

Figure 2 shows the model’s frame-by-frame output on
the test set. The results are fairly encouraging for several
reasons. Firstly, we see that between each pair of con-
secutive frames, the balls undergo motion. Moreover, lo-
cal acceleration and deceleration appear fairly realistic, fur-
ther indicating that the network understands rules of how
balls move between frames. In addition, each ball gener-
ally retains its shape under translation rather than deform-
ing, meaning that the network recognises that its primary
task is that of translation. Finally, the balls – when they col-
lide with each other (as in Figure 2B) or with the wall (as
in Figure 2C), move away from the object the collided with,
meaning that the model has learned the general mechanic of
collisions.

That said, the model’s output is not quite perfect. For ex-
ample, while the local acceleration and deceleration of balls
is realistic, it is not globally consistent and so the balls occa-
sionally jitter back and forth in a fairly inconsistent manner

(as in Figure 2C). One way to fix this is to pass in a series
of seed frames rather than a single frame in order to give
the network some sense of where the ball is moving. In
addition, we noticed that the network was prone to occa-
sionally producing new balls, which we hypothesised was
because of the VAE’s learned latent space varying smoothly
and thus susceptible to small variations. We display the ef-
fects of perturbing the latent representation of a particular
image in Figure 3.

5.2. Moving MNIST

The Moving MNIST dataset provides several interesting
challenges for a video generation model, in addition to those
presented by the Bouncing Balls dataset. Firstly, the shapes
of these digits are significantly more complex than the balls,
but must still be preserved under translation. In addition, the
digits pass through each other instead of moving apart upon
collision, and so the model must be able to disentangle the
digits and move them separately regardless of their location.
As a result, the model must not only learn the physics of
natural motion and collision (with walls), but also be able to
keep track of each moving entity individually, even if they
overlap.

We used the Adam update to optimise the network. We
used a learning rate of 1e− 3 for the VAE-LSTM as well as
the discriminator and a batch size of 32

5.2.1 Smoothness of motion

The model’s frame-by-frame output on the test set can be
seen in Figure 4. Firstly, we note that the generated outputs
demonstrate clear and consistent motion between frames
which serves as a promising reinforcement that our network
is able to understand and synthesise notions of movement.
Moreover, upon seeing the animated motions between the
generated GIFs for the Bouncing Ball dataset and the Mov-
ing MNIST dataset (as shown on this page), we noticed the
motion in the latter was actually much smoother and more
consistent. We believe this might have to do with the dig-
its being asymmetric and thus allowing the network to use
the asymmetries as points of reference. This would be an
interesting avenue to investigate further.

5.2.2 Morphing digits and disentangling digits

We also noticed that the same problem from the Bounc-
ing Ball dataset seems to appear in the generations of this
dataset. In particular, the digits morph from their original
shape into other digits as they move. Again, we think this
is due to the way the latent space is structured and this hy-
pothesis seems to be supported by a visualisation of view-
ing the outputs when the latent space is varied (Figure 5).
Since the variational encoder ensures the generations trans-
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Figure 2. LSTMVAE-GAN output on test set. The left column shows the ground truth frames of three different animations (A), (B), (C)
from the dataset. The right column shows the output generated by our model from each initial seed frame (highlighted in green).

Figure 3. Outputs from the decoder network as the latent vector
z is varied across an arbitrary dimension. The decoder smoothly
interpolates between two pairs of positions for the ball.

form smoothly, we see the digits morph smoothly from one
to another as they move.

Another thing the network noticeably struggles with is
disentangling the digits when they go through each other.
We hope to possibly deal with this issue in the future by
conditioning on the labels of the digits in the image. We
could also potentially have a classifier to detect the images
present in the image and add a further adversarial loss for
when the generator produces digits that were not in the orig-
inal image.

6. Future work
While promising, our results are still fairly preliminary,

and opportunities for future research in this space abound.
Work in the immediate future should be concentrated on
making models which are more resilient against the com-
pounding of small errors over longer time frames.

This is especially true of the Moving MNIST dataset,
for which predicted sequences frequently portray numbers
melding together or fading altogether, billowing and dissi-
pating like smoke. We hypothesise that this occurs because
during train-time the model is only evaluated on its abil-
ity to generate single-frame predictions from seed frames;
because the seed is effectively ‘reset’ to ground truth af-
ter each predicted frame is generated, the model is not pe-
nalised for introducing small irregularities that, when com-
pounded over several iterations, lead to significant devia-
tions from ground truth.

In the bouncing ball dataset, this issue is visible in the
lack of conservation of the momentum of individual balls
over long periods. Locally, over small time sequences, ball
movement is surprisingly even, displaying smooth acceler-
ation and deceleration. This is critical to maximising the
model’s training objective; over longer sequences, however,

balls will frequently switch direction, meandering organi-
cally and seemingly at random (though of course the di-
rection of movement is in fact determined by small biases
in the randomly generated dataset). Modifying the training
objective to penalise deviations over longer time sequences
would likely improve the continuity of the balls’ momen-
tum.

Alongside modifying the training objective, several other
techniques appear promising in minimising long-term de-
viations. Training and evaluating on longer seed frames
would likely improve the consistency of the model, espe-
cially in the first few generated frames. Similarly, novel
architectures that allow conditioning a model’s output on
a chosen direction or set of directions could improve con-
sistency. Finally, Temporal LSTM models have also been
proposed, and seem highly applicable to this problem.

Of course, our synthetic datasets do not present partic-
ularly realistic or sophisticated examples of objects in mo-
tion; more realistic datasets present a massive area for future
exploration. As a first step in this diretion, we trained our
VAE on the Tiny Imagenet dataset and reproduce its outputs
in Figure 6. In a similar vein, datasets with more variation in
the number, shape, and distance (relative to the visual point
of observation) of objects in motion will allow the training
of much more sophisticated models.

Critical to advancing research towards more sophisti-
cated video generation is the curation of large-scale dataset
for the problem. Work in this direction, while not immedi-
ately rewarding, will be crucial moving forward, especially
for learning tasks centered around visual representations of
more complex systems of physical interactions.

7. Conclusion

In this paper, we propose an architecture for generating
animated GIFs from still image frames. The model com-
bines the most effective techniques from generative net-
works, future sequence prediction, and adversarial training
in a modular way to effectively understand and synthesise
motion in images. We show that our model preforms suc-
cessfully on this task, generating animations of objects that
move smoothly and bounce off each other and walls when
colliding.
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Figure 4. LSTMVAE-GAN output on test set. The left column shows the ground truth frames of three different animations (A), (B), (C)
from the Moving MNIST dataset. The right column shows the output generated by our model from each initial seed frame (highlighted in
green).

Figure 5. Varying latent space of MMNIST generator.

Figure 6. Reconstruction capability of the encoder/decoder net-
work trained on Tiny Imagenet.

Nevertheless, we see a lot of avenues for improvement
in our model. Although it is able to synthesise new motion,
the smoothness of the motion could be better and moreover,
the continuity of this motion over time could be markedly
more consistent. We believe this problem mainly stems
from the fact that the network only has a single seed frame
from which it arbitrarily picks motion to generate. Training
our network with longer seed frames or conditioning on a
direction would possibly yield more robust results.

Furthermore, the network could perform better in retain-
ing the forms of the objects as the animation progresses.
The error that arises from this issue compounds as the gen-
eration progresses since the last generated frame is used to
generate the next one. To this end, we hope to improve the
network by possibly conditioning on the objects present in
the initial frame or bolstering our discriminator with a cate-
gorical classifier that penalises the generator for producing
digits that are not in the original frame. In general, quanti-
tatively evaluating generative models is a difficult problem
and work has been done in using better metrics [8]. We hope
to apply some of these ideas to our model in the future.

Motion is a difficult problem for computer vision due to
a variety of factors such as an added dimension of complex-
ity, computational and memory limitations, and sparsity of
datasets. We intend for this to be a small step forward in
the task of understanding motion using deep networks and
hope to continue our exploration on more complex settings.
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